

DPP No. 42

Total Marks: 23

Topics: Fundamentals of Mathematics, Quadratic Equations

Type of Questions

M.M., Min.

Single choice Objective (no negative marking) Q.1

(3 marks, 3 min.)

31 [3,

Multiple choice objective (no negative marking) Q.2

(5 marks, 4 min.)

[5, 41

Subjective Questions (no negative marking) Q.3,4,5,6,7

(4 marks, 5 min.)

[15, 15]

If roots of the quadratic equation $x^2 - x \ln (a^2 - 3a + 2) + a^2 - 4 = 0$ are of opposite sign, then 1.

(A)
$$a \in (-2, 2)$$

(B)
$$a \in (-\infty, 1) \cup (2, \infty)$$

(C)
$$a \in (-\infty, -2) \cup (2, \infty)$$

(D)
$$a \in (-2, 1)$$

The complete solution set of the inequation $x - \frac{2(K-1)}{K} \le \frac{2}{3K}$ (x + 1) is given by 2.

(A)
$$(-\infty, 2]$$
 if $K > \frac{2}{3}$

(A)
$$(-\infty, 2]$$
 if $K > \frac{2}{3}$ (B) $[2, \infty)$ if $0 < K < \frac{2}{3}$ (C) $(-\infty, 2]$ if $K < 0$ (D) R if $K = \frac{2}{3}$

(D) R if K =
$$\frac{2}{3}$$

- If α , β be the roots of the equation $\lambda^2(x^2-x)$ + $2\lambda x$ + 3 = 0 and λ_1 , λ_2 be the two values of λ for which α and 3. β are connected by the relation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{4}{3}$ then find the equation whose roots are λ_1^2/λ_2 and λ_2^2/λ_1 .
- Solve $\frac{x^2 |x| 12}{x 3} \ge 2x$ 4.
- Solve $|x 6| > |x^2 5x + 9|$ 5.
- If α , β are the roots of the equation $x + 1 = \lambda x(1 \lambda x)$ and λ_1 , λ_2 be the two values of λ determined from the 6. equation $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \pi - 2$, show that $\frac{\lambda_1^2}{\lambda_2^2} + \frac{\lambda_2^2}{\lambda_4^2} + 2 = 4\left(\frac{\pi + 1}{\pi - 1}\right)^2$.
- If α , β are the roots of x^2 + px + q = 0 and also of x^{2n} + p^nx^n + q^n = 0 and if $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ are the roots of 7. $x^n + 1 + (x + 1)^n = 0$, then prove that n must be an even integer.

Answers Key

- **1.** (D) **2.** (A)(B)(C)(D)
- 3. $3x^2 + 68x 18 = 0$, $\lambda^2 4\lambda 6 = 0$, $(\lambda \neq 0)$
- **4.** $x \in (-\infty, 3)$ **5.** $x \in (1, 3)$
- **6.** $\left[\frac{(\lambda_1 + \lambda_2)^2 2\lambda_1 \lambda_2}{\lambda_1 \lambda_2} \right]^2$

